Supplementary Materials for ## Trans-ethnic genome-wide association study of severe COVID-19 Peng Wu^{1,2,*}, Lin Ding^{3,4,*}, Xiaodong Li^{5,6,*}, Siyang Liu^{7,*}, Fanjun Cheng^{8,*}, Qing He^{9,*}, Mingzhong Xiao^{5,6}, Ping Wu^{1,2}, Hongyan Hou^{2,10}, Minghui Jiang^{3,4}, Pinpin Long^{4,11}, Hao Wang^{4,11}, Linlin Liu¹², Minghan Qu^{3,4}, Xian Shi^{3,4}, Qin Jiang^{4,11}, Tingting Mo^{4,11}, Wencheng Ding^{1,2}, Yu Fu^{1,2}, Shi Han¹², Xixiang Huo¹², Yingchun Zeng¹², Yana Zhou^{5,6}, Qing Zhang^{5,6}, Jia Ke^{5,6}, Xi Xu^{5,6}, Wei Ni^{5,6}, Zuoyu Shao^{5,6}, Jingzhi Wang^{5,6}, Panhong Liu¹³, Zilong Li¹³, Yan Jin¹⁴, Fang Zheng¹⁵, Fang Wang⁹, Lei Liu⁹, Wending Li^{4,11}, Kang Liu^{4,11}, Rong Peng^{4,11}, Xuedan Xu^{4,11}, Yuhui Lin^{4,11}, Hui Gao^{4,11}, Limei Shi^{4,11}, Ziyue Geng^{4,11}, Xuanwen Mu^{4,11}, Yu Yan^{3,4}, Kai Wang^{3,4}, Degang Wu^{3,4}, Xingjie Hao^{3,4}, Shanshan Cheng^{3,4}, Gaokun Qiu^{4,11}, Huan Guo^{4,11}, Kezhen Li^{1,2}, Gang Chen^{1,2}, Ziyong Sun^{2,10}, Xihong Lin^{16,17,18}, Xin Jin^{19,#}, Feng Wang^{2,10,#}, Chaoyang Sun^{1,2,#}, Chaolong Wang^{2,3,4,#} Supplementary Table 1. Comparison of top association loci with and without adjustment for age and sex in the analyses of Chinese samples. | Lead variant | Dataset | No adjustment for age and sex | | | Adjusting for age and sex | | | |---------------------------|--|--|---|--|--|---|--| | | | OR (95% CI) [†] | P | Heterogeneity | OR (95% CI) [†] | P | Heterogeneity | | rs1853837
at 6p21.1 | Chinese (GWAS) HGI (B2_release3) Chinese (WGS) Meta-analysis | 1.30 (1.13-1.50)
1.28 (1.15-1.42)
1.27 (1.07-1.51)
1.28 (1.19-1.39) | 3.24×10 ⁻⁴
5.24×10 ⁻⁶
7.06×10 ⁻³
2.51×10 ⁻¹⁰ | $I^2 = 0.00\%$ $P_{\text{het}} = 0.97$ | 1.33 (1.12-1.57)
1.28 (1.15-1.42)
1.30 (1.08-1.57)
1.29 (1.19-1.40) | 9.48×10 ⁻⁴
5.24×10 ⁻⁶
6.24×10 ⁻³
4.20×10 ⁻¹⁰ | I^2 =0.00%
P_{het} =0.93 | | rs8176719
at 9q34.2 | Chinese (GWAS) HGI (B2_release3) Chinese (WGS) Meta-analysis | 1.28 (1.12-1.46)
1.17 (1.09-1.26)
1.17 (0.98-1.38)
1.19 (1.12-1.26) | 3.19×10 ⁻⁴
1.27×10 ⁻⁵
8.03×10 ⁻²
8.98×10 ⁻⁹ | I^2 =0.00%
P_{het} =0.51 | 1.15 (0.99-1.35)
1.17 (1.09-1.26)
1.17 (0.97-1.41)
1.17 (1.10-1.24) | 6.80×10 ⁻²
1.27×10 ⁻⁵
1.08×10 ⁻¹
5.88×10 ⁻⁷ | I^2 =0.00%
P_{het} =0.99 | | rs74490654
at 19q13.11 | Chinese (WGS) | 8.73 (4.14-18.41) | 1.22×10 ⁻⁸ | - | 10.93 (4.56-26.19) | 8.22×10 ⁻⁸ | - | Notes: †Odds ratio (OR) and 95% confidence interval (CI) of the alternative allele. Meta-analysis is based on the Han-Eskin random-effect method. All association analyses of Chinese samples have adjusted for the top two PCs. Supplementary Table 2. Suggestive loci associated with COVID-19 severity ($P < 10^{-6}$). | Locus | Dataset | Sample size | Lead variant | $\mathbf{AF}^{\$}$ | OR (95% CI) [†] | P | Heterogeneity | |----------|-------------------|---------------|-----------------|--------------------|--------------------------|-----------------------|-------------------------| | 21q22.11 | Chinese (GWAS) | 598/2,260 | rs1051393 | 0.610 | 1.12 (0.97-1.28) | 1.16×10 ⁻¹ | | | IFÑAR2 | HGI (B2 release3) | 3,199/897,488 | chr21: 33241950 | 0.333 | 1.19 (1.11-1.27) | 1.12×10^{-6} | | | | Chinese (WGS) | 474/1,615 | T/G | - | - | - | $I^2 = 0.00\%$ | | | Meta-analysis | 3,797/899,748 | Missense | | 1.17 (1.10-1.25) | 4.33×10 ⁻⁷ | $P_{\text{het}}=0.43$ | | 3p14.2 | Chinese (GWAS) | 598/2,260 | rs672699 | 0.478 | 1.04 (0.91-1.19) | 5.80×10 ⁻¹ | | | PTPRG | HGI (B2 release3) | 3,199/897,488 | chr3:61768231 | 0.789 | 1.19 (1.10-1.29) | 1.36×10^{-5} | | | | Chinese (WGS) | 474/1,615 | T/A | 0.484 | 1.37 (1.14-1.63) | 5.49×10^{-4} | $I^2 = 67.21\%$ | | | Meta-analysis | 4,271/901,363 | Intronic | | 1.18 (1.04-1.34) | 5.58×10^{-7} | $P_{\text{het}} = 0.05$ | | 16q21 | Chinese (GWAS) | 598/2,260 | rs7499679 | 0.250 | 0.85 (0.72-0.99) | 3.80×10 ⁻² | | | ADGRG1 | HGI (B2 release3) | 3,199/897,488 | chr16:57636629 | 0.227 | 0.86 (0.79-0.92) | 5.92×10^{-5} | | | | Chinese (WGS) | 474/1,615 | G/A | 0.276 | 0.80 (0.66-0.97) | 2.65×10^{-2} | $I^2 = 0.00\%$ | | | Meta-analysis | 4,271/901,363 | Intronic | | 0.85 (0.79-0.90) | 8.09×10^{-7} | $P_{\text{het}} = 0.82$ | | 1q44 | Chinese (GWAS) | 598/2,260 | rs12130553 | - | - | - | | | HNRNPU | HGI (B2_release3) | 3,199/897,488 | chr1:244873270 | 0.437 | 1.19 (1.11-1.28) | 4.19×10^{-6} | | | | Chinese (WGS) | 474/1,615 | T/C | 0.338 | 1.18 (0.99-1.41) | 6.91×10^{-2} | $I^2 = 0.00\%$ | | | Meta-analysis | 3,673/899,103 | Intergenic | | 1.19 (1.11-1.27) | 9.17×10^{-7} | $P_{\text{het}} = 0.93$ | Notes: This table presents loci that are included in at least two datasets and have meta-analysis P value between 5×10^{-8} and 10^{-6} . Sample size is presented as number of cases / number of controls. * Variant with the smallest p value within each locus: rs number, GRCh38 genomic position, reference/alternative alleles, annotation. \$ AF: frequency of the alternative allele: from top to down is the AF in Chinese GWAS controls, the AF in 1KGP European samples, and the AF in Chinese WGS controls. †Odds ratio (OR) and 95% confidence interval (CI) of the alternative allele. Meta-analysis is based on random-effect model. **Supplementary Figure 1. Imputation quality as a function of MAF.** Each box summarizes the imputation R² for autosomal SNPs within a MAF bin. The dark horizontal line represents median value, and the grey box represents interquartile range (IQR). Outliers below the lower whiskers (1.5×IQR below the 25th percentile) of the last three bins are not shown. Supplementary Figure 2. GWAS results for severe COVID-19 with first two PCs included as covariates. (a) Manhattan and QQ plots for Chinese GWAS. (b) Manhattan and QQ plots for the meta-analysis of Chinese GWAS and Chinese WGS results. (c) Manhattan and QQ plots for the meta-analysis of Chinese GWAS and HGI B2_release3 results. (d) Manhattan and QQ plots for the meta-analysis of Chinese GWAS, HGI B2_release3 results, and Chinese WGS. In Manhattan plots, the red dash line indicates genome-wide significance level of $P=5\times10^{-8}$ and the grey dash line indicates suggestive significance level of $P=10^{-6}$. In QQ plots, the grey region represents the 95% CI of P values under the null hypothesis of no association. Supplementary Figure 3. GWAS results for severe COVID-19 with first two PCs, age and sex included as covariates. (a) Manhattan and QQ plots for Chinese GWAS. (b) Manhattan and QQ plots for the meta-analysis of Chinese GWAS and Chinese WGS results. (c) Manhattan and QQ plots for the meta-analysis of Chinese GWAS and HGI B2_release3 results. (d) Manhattan and QQ plots for the meta-analysis of Chinese GWAS, HGI B2_release3 results, and Chinese WGS. In Manhattan plots, the red dash line indicates genome-wide significance level of $P=5\times10^{-8}$ and the grey dash line indicates suggestive significance level of $P=10^{-6}$. In QQ plots, the grey region represents the 95% CI of P values under the null hypothesis of no association. Supplementary Figure 4. Quality control of the GWAS array data of COVID-19 patients. Hubei TCM Hospital: Hubei Hospital of Traditional Chinese Medicine. **Supplementary Figure 5.** Cryptic relatedness in the GSA genotyped COVID-19 samples. Numbers of pairs for each relatedness type were presented in the legend. The x-axis is the probability of sharing 0 alleles identical-by-descent (IBD) at a SNP between two individuals. **Supplementary Figure 6. PCA of the Chinese GWAS samples.** We highlighted samples severe COVID-19, mild COVID-19, and ancestry-matched population controls in columns from left to right, respectively. **Supplementary Figure 7. PCA of Chinese WGS samples.** We highlighted samples severe COVID-19, mild COVID-19, and ancestry-matched population controls in columns from left to right, respectively.